Looking at the charts, I would like to keep what I do in the green zone. What I cannot find is a chart that goes low enough in ohms to tell whether or not what I am doing is okay. My latest atomizer build is a .4 ohm on a Plume Veil. I use it with max airflow, side windows open full and top cap open allowing air. Excellent vapor production (for me anyway), at 7 watt - 1.7V (IPV2X mod reading). So where do you think that type of build would land in the charts. Safe to say I am in the green zone? I guess maybe I have developed some paranoia with this formaldehyde thing that has been floating around the internet. Does anyone know where to find a chart or calculator that goes from .1 ohm on up and indicating the safe areas?
Thanks,
Charles
Hey Guys,
I have been wanting to use a mech mod for quite some time now. But I didn’t want to rush into things, given that they can be dangerous if not used properly.
To prepare I have studied ohm’s law and have a pretty decent grasp on it. And have a calculator app on my phone.
I have checked out Mooch’s battery recommendations and have a good idea of what batteries to use and which to avoid.
I still do have a few questions I was hoping an experienced Mech user could help me answer:
- What would be the “sweet spot” as far as resistance and safety go for a dual coil set up? Obviously I want to go as low as possible and have a hard hitting vape. But I also want to be safe. I plan to use a dual 18650 Parallel mod (The Clutch X18). I would be most likely be using Sony Murata batteries as I cant find any Samsungs where i live. I’m thinking somewhere around 0.17-0.2? Or would it be safe to go lower than that? I will of course test my build on an ohm reader and regulated mod before throwing it on the mech to be safe.
- Are there any other general safety tips? Ive heard that you want to screw the Atty down all the way first, before inserting the batteries. And then insert the batteries. And when removing the batteries i heard you want to slightly unscrew the atty first, and then carefully remove the batteries? Can anyone please confirm if this is correct.
- Is its safe to chain vape on a dual 18650 parallel mod? When I say chain vape I mean like maybe taking 5-6 big hits back to back. Then waiting 3-5 minutes, dripping some juice and then doing another 5-6 hits.
- Is there anything I should be monitoring while I’m vaping? Like the heat of the batteries? From what I’ve read, the batteries drain quite fast on a mech. And after some experience you will just kind of know when they need charging because the vape experience changes. Is there anything I’m missing? Or something i should be looking out for?
- I can only vape in my kitchen. And sometimes there might be a little bit of water on the counter from someone’s drink sweating, or drops after someone washed their hands etc. Is this a risk? I will of course do my best to keep all surfaces dry. I’m not talking about large amounts of water or submerging or getting the mod really wet. But just what one might find on a kitchen counter.
- Any other tips you could throw my way would be great!
Thanks in advance!
An online vape shop here at Greece at the description for dotBox Dual Mech mod says"
"Switch to Parallel Mode for longer Vaping time and exceptional power from two 18650 batteries".
The dotbox dual mech has the option to select series or parallel connection via a switch.
I send them a email that this doesn't apply (for the same power output always),for example 0.1 ohm coil in parallel connection and 0.4 ohm coil in series connection.
Two batteries in series provide the same amount of watt hours a parallel connection does.
The vapeshop replied and told me that the description is copy and paste from Dotmod.com
Indeed.
QUOTE from dotBox Dual Mech - dotmodretail
"Last Longer. Switch to Parallel Mode for longer Vaping time and exceptional power from two 18650 batteries".
The vape shop also said that the voltage sag at parallel connection is spread out over the two batteries in Parallel.Thus more vaping time than using a series connection.
Okey I made the calculations for voltage sag using for example two Sony VTC5A 18650 batteries with a DC Internal Resistance = 18.6mOhms (0.018 ohm).
I got the same voltage sag 0.378 V in both configurations (0.1 build in parallel-0.4 build in series).
Am i correct or am I missing something?(i'll send to the vape shop the link for this thread so they can read your opinions because i think they believe i'm talking bulls..t!
Here's a short vid I made to comprehensively, yet simply explain what you need to know about batteries and resistances to keep you safe
Direct you tube link:
So I was just wondering what resistances (and I suppose coils) people use for their cloud chasing builds.
Is the lower resistance or surface area of the coils more important?
My current go-to setup is a dual micro coil at around 0.18 - 0.20 ohms with 24 guage (I think 4 wraps).
Hi guys,
Is it really normal for an atomizer to get hot especially when using dual coils?
I just created a dual coil a couple of minutes ago using 24 gauge kanthal wire, 10 wraps each on a 2.4mm precision screw driver. My meter shows that the resistance is at 0.4 ohms, being curious and all since this is the first time that I made a dual coil, i decided to test it out.
Got some good flavor and vapor, though the vapor is warmer than I would want it to be ( I prefer cold vapor)
After taking a couple of 5 secs drag, I notice that my atomizer became hot, not warm, but hot. Is this something that I should be concerned about? I am doing something wrong or have I done something wrong when creating my coils?
Please help.
Here are some pictures of my device and atomizer. ( Philbox wood mod running on 2 pcs of AWT 18650 2600mah battery, my atty is Haze by vapehead origins)
so in my pursuit of vaping above 200 Watts I made a fuse 3x24ga gauge wrapped with 36 gauge and I tried three coils. it came out .07 I Vaped it at about 375 watts it was a hot vape but the ohms were very low so I had a problem with power my DNA 250c was reporting 65 amp output so I took that and put in dual fuse 22ga gauge wrapped with 36 gauge I ran that build triple coil I used it at about 250 Watts. what I am trying to do is vape at about 300 to 400 watts with an ohm or .2 to .3. the inner diameter will be 5.5 or 5 mm I'll be using the kanthal core wrapped with 36 gauge and ni80.I'm trying to figure out what my next bill should be to try to vape above 300 watts the restrictions I have is it can't be below point 1 ohm or above .3 ohm I have two aromamizer plus has with the series deck The parallel deck a second parallel deck and a single coil deck. The single coil deck fit 6.36 mm.
I also have the aromamizer titan.
What gauge would you Clapton?
Sent from my HD1907 using Tapatalk
I've seen many threads where people are just getting into vaping and it seems now that it's growing popular at an extremely fast rate. Vaping as opposed to smoking has always been a great alternative, but now that more satisfying equipment is readily available and popular, it would be great to have an ongoing guide for someone brand new. If you're just getting into vaping now you're going to be hit with a million different devices, a trillion different atomizers, and an infinite amount of ways to rebuild. All of this information can seem very intimidating and overwhelming, but having communities like ECF to get advice are very helpful.
I remember when I first started learning about how devices work and how sending current through a coil with different resistances at different voltages can yield different results, and then add in different ways to get to that same resistance, the possibilities go on and on. It's not easy to someone brand new, but with proper information it is easy. If we all had a single ongoing information source referring to device capabilities and ohms law available to members and the public a lot of questions would be answered everyday and thoroughly.
I say ongoing because vaporizer equipment is expanding so fast. The amount of gear and vape related things are moving so fast. I remember seeing a good amount of youtube videos with Phil Busardo visiting vaporizer headquarters and manufacturing stations across seas and here. We also see a lot of expanding on the site. I have only been a member since 2013, but the amount of stuff coming out today is much more than before. There is also a lot of traction on this forum, but that's what makes it good.
I've read a lot of good information on the forum before and some of the posts are really spot on, I feel it should be compiled to one source. I've seen Baditude and Susan~s both have readily available links for solid information multiple times. It would be great to access all the detailed information from all the great posts I see on threads all in one place, like a ongoing source with everything like: battery safety, hybrid top cap mechanical, cleaning a mechanical, coils, example chips in regulated devices and how they work, liquid and the ingredients, the effects vs cigarettes, the proactive community and the apposed laws. For someone brand new they see so many new things at once. It wouldn't have to be a day to day updated guide, just a compiled, easy to understand with examples, information source about vaping up to now. I've seen a lot of good posts and wish I could quickly pull up the same posts without searching. I think we deserve some sort of guide, vaping isn't an underground type of thing.
Ohm's law
With all that I want to present a small guide I prepared as a response to a few questions I see on the forum.
I feel the most common question is about Ohm's law and about understanding resistances for devices. Ohm's law is the most important piece of information pertaining to vaping since it's what we use all the time. There are four variables to know in the equations, but an easy way to help understand it is with the Steam engine online tool. In the online calculator you see resistance, voltage, current, power. The units are ohms, volts, amps, and watts respectively. An even easier way to understand it is thinking about it in an example.
The water pipe analogy
Think of the resistance like a pipe and you have water flowing out of the pipe and the water is amperage. There is also a valve on the pipe that you can turn to make the water(amperage) come out faster and that valve acts like a voltage control. The end result of the water flowing out the pipe is expressed by power, also known as wattage. You can increase the wattage by either decreasing the resistance or increasing the voltage.
Let's say you have a pipe set up with a certain width and water is flowing at a constant rate. Lets also say the pipe has a resistance of 1ohm and our valve to control the speed is set to 4volts. You can use Ohm's law and see that amount of water coming out is 4amps and the pipe's power is measured to 16watts. Now if you widen the same pipe more water(amps) can flow through it and you didn't touch the voltage valve. Adjust the pipe's resistance to 0.5ohms and as a result we see we just doubled the amount of water to 8amps and doubled the power to 32watts with a constant voltage.
Take the same pipe you started with, 1ohm, and instead of making it wider you just turn the valve and double the pressure or speed from 4volts to 8volts. You see 8amps of water flowing through the pipe and the power by the pipe went up to 64watts by adjusting the voltage only. Now put the two examples together and lower the resistance to .5ohms and increase the voltage to 8volts, you see even more power at 128watts and 16amps.
This can be applied to our coils and devices. Mechanical mods work like the first example in which we just made the pipe wider because that's the only thing you can adjust on a mechanical. You have a fixed battery voltage, and can only change the resistance. The second example is more like a variable voltage/wattage mod where you can keep the pipe the same resistance and just turn the voltage valve.
Understanding how these variables work will give you a better understanding of ohms law and how to build for specific devices.
Ohm's law and a regulated PV
Lets talk about personal vaporizers, or mods, a little more. Each device has: a resistance range it can read, an amperage limit it can push, a voltage range it can fire, and a wattage range it can fire. When you look at a device you want to know all of these things because it will determine what resistances will work the best on top. Some devices work well with a wide range, some work very well within a small area within that range. Lets look at an example.
Here is the DNA40(kanthal) and it's specs given by Steam Engine. I don't own one so I don't know the actual performance, but I want to use the numbers as an example. You can see the max voltage, max wattage, resistance range, and amp limit on the left. On the right there is three boxes, these three boxes is where all the information comes together.
Current limit 16 A vs 40 W
The box labeled Current limit 16 A vs 40 W measures the lowest possible resistance you can use to get all 40watts. When you decrease your resistance you are able to push more amps through your coil with available voltage and get more wattage. This is done by using ohms law calculator and plugging in the max amp limit along with the max wattage it can fire. You can see that the lowest possible resistance to get all 40watts while using all the amps is a bit lower than what the device can read. This means the DNA40 devices can fire it's lowest reading while still getting 40watts and it's starting to bump the amp limit. Not the best place to be, but it works as advertised.
Voltage limit 9 V vs 40 W
The next box Voltage limit 9 V vs 40 W measures the highest possible resistance you can use to get all 40watts. When you increase your resistance you are able to use more voltage to get to higher wattage without using as many amps. This is done by plugging in the max voltage for the device and its max wattage it can fire. You can see that highest possible resistance to get all 40watts while using all the voltage is a bit higher than what the device can read. Now you're starting to hit the voltage limit, but it's still firing 40watts.
Optimal resistance
The last box Optimal resistance sums it all up by giving you the resistance range along with it's median resistance. Then it gives you a sweet spot. This is the median from the original median and the high limit. Basically it's telling you that if you want all 40 watts and you want to keep your battery life in good shape to use a resistance around the sweet spot. You don't have to use the sweet spot, but keep in mind the less amps you pull, the more battery life you get while taking advantage of the device's voltage.
These numbers are unique for each device that uses a different chip. If you start looking at the higher powered devices like the Sigelei 150W you'll see that you can only get all 150 if you build within a certain range that it can fire. Too high of a resistance and you'll use all the voltage before you start taking advantage of it's available amperage by lowering the resistance. This doesn't mean the device doesn't live true it it's specs because the it can fire all 150, but there is limitations. In order to to fire all 150w within it's 0.1-3.0ohm range the power source would have to give 20+ volts which is impossible for safe portable devices we have now.
Ohm's law and a mechanical PV
Check out how mechanical devices work, you only use the specs from the battery along with your resistance.
Take the Sony VTC4 for example. I used a resistance of 0.5ohms and a voltage of 4.1volts charged on this page. The page tells you how many amps you are pushing along with the wattage output. The amp limit is advertised to be 30amps, but the box under shows the headroom or I like to call it the buffer. In this example you only use 8.2amps, this is safe for the battery. You really shouldn't use all the battery's amperage on an unregulated mechanical, it's not very safe. A lot of people agree on only using about 75% of the batteries amp limit, leaving a 25% headroom to be considered safe. This works out to be about 22amps used and around 0.18-0.19ohms. You should only do this if you are aware of the risks.
Finding your resistance
Now that you looked at the devices, look at choosing a coil for your device. This should be easy now because you just saw what will work well on your device. Take your resistance you feel you would be comfortable with and go to the coil calculator.
I used a 0.5ohm resistance, selected the kanthal of choice, selected dual coils, and picked the coil's internal diameter. I also calculated the wattage with 0.5ohms and 4.1volts I want to use to get around 33 watts to plug into the heat flux(under results) to get an estimate of the vape temperature.
You want to pay attention to number of wraps, the coil width, and surface area. This will give you an idea of how big your potential coil is. What you can do from here is change the diameter, youll notice the surface area stays the same, but the width will change because the number of wraps change. You can also change the resistance and use a fixed diameter to change width and surface area. Try selecting different gauges too.
This is my first shot a making a simple guide. Please let me know what you think and feel free to comment. I wanted this to be as simple as possible and the Steam Engine is extremely helpful in doing so. I really think it would be a great idea to have the most popular questions to vaping with answers available to anyone new. I'm not saying people are not getting the right information, because they are and the time people take to make posts explaining things are greatly appreciated. I still think having a detailed, but easy to follow guide with examples would answer most of the questions. I've seen other great guides on the forum, but the technology moves so fast and having one ongoing source explaining everything would be awesome. There is so many things to learn besides battery safety and Ohm's law and all the information is here, but only for those who take the time to ask for it.
Thanks to Lars Simonsen who made Steam engine calculator. Also thank you to ECF member Dice57 for helping me with figuring out how most of this works.
A few links I visit:
Steam Engine | free vaping calculators
E-Cigarette Forum - Baditude - Blogs
E-Cigarette Forum - State O' Flux - Blogs
http://www.e-cigarette-forum.com/forum/ecf-library/661383-basic-coil-building-safety-beginners.html
The ECF Library (this strongly represents the type of guide I'm talking about)
I would really like commentary on the idea of a single comprehensive vaping guide. I think the members here could easily do it, let me know what you think.
So, I'm familiar with battery safety, load, amp max for safe use, etc. I also know about ohms law. I'm on a regulated mod with an archon v2 rda and have just wrapped my 3rd set of coils. Three strands of 28ga. Kanthal. Two coils reads on my mod at .12 ohms. What's a good wattage range? I have a dual battery sigeli mod that goes to 200
[Edited]
Let me clarify I enjoy sub-ohm and cloud chasing. It's not rocket science and can be as safe as any other vape. My annoyance is with TC coils being sold by Kanger and such at .2 ohms. You can daily read on here someone wanting to play with low ohm coils that have no understanding of ohms law. Add to that people tend to believe if it's made from a factory and it fits a mod then it's safe. I'm just waiting to read about someone placing a TC coil on a mech using a AW bat with a 10amp limit thinking they are safe because everything seems to work together. They don't know any better and I have no quarrel with that, it's part of learning. It's companies and individuals selling products with no regards to wether the person understands the risks and to make things worse half the people working at vape shops don't know any better either. I talked to a couple guys working that said learning ohms law was a waste of time to just use the calculator apps. Those apps build complacency and complacency is one of the most dangerous things in the world.